مکعب داده Data Cube و OLAP

مکعب داده (Data Cube) و OLAP چیست؟

مفهوم ديتا کيوب(Data Cube) و  OLAP بسیار نزدیک بوده تا جایی که میتوانیم برای این دو واژه یک مفهوم را در نظر بگیریم. در واقع مکعب داده یک تکنیک اصلی برای تحلیل های OLAP است.  مکعب داده  لزوما یک ساختار سه یعدی نیست. مکعب داده یک محدوده سه بعدی کمتر یا بالاتر از داده های یه هم مرتبط است که معمولا برای توضیح توالی زمان یک داده استفاده می‌شود.

مکعب داده به راحتی داده‌ها را تفسیر می‌کند و هنگامی مفید است که بخواهید داده‌ها را با ویژگیهایی به عنوان سنجه‌های مشخصی از نیازهایِ کسب و کار، ارائه دهید. مکعب داده ها برای نمایش داده‌های پیچیده، که توسط جدولی از سطرها و ستون‌ها توصیف می‌شود، استفاده می‌شوند که در آن داده ‌ها به صورت چند بُعدی نمایش داده شده و هر بُعد یک ویژگی از انبار داده را نشان می‌دهد. به عنوان مثال، فروش روزانه، ماهانه یا سالانه.

جایگاه مکعب داده

هوش‌تجاری در واقع فرآیند تبدیل داده‌های سازمان به ارزش (Value) برای آن سازمان است و برای این کار از انبار داده (Data Warehouse) استفاده می‌کند تا داده‌ها را در گوشه‌ای انبار کند و بتواند از آن‌ها در مواقع لازم استفاده نماید. در این مبحث می‌خواهیم یکی از روش‌های معروف انبار کردن داده‌ها که به آن مکعب داده یا همان Data Cube گفته می‌شود را با هم دیگر مرور کنیم تا دید بهتری در حوزه انبار کردن داده‌ها به دست بیاوریم.

انباره داده معمولا مبتنی بر ساختارهای داده‌های چند بعدی مدل می‌شود. این ساختارها داده مکعب – Data Cube – نامیده می‌شوند. در داده مکعب هر بعد با یک خصوصیت یا مجموعه‌ای از خصوصیت‌ها در ارتباط است.

انباره داده، مخزنی شامل مکعب داده های جمع آوری شده از چندین منبع مختلف است که این اطلاعات را تحت یک طرح واحد جمع آوری کرده است. مخازن اطلاعات معمولا در یک سایت واحد قرار می‌گیرند. انباره‌های داده حاصل فرآیند پاک‌سازی داده، یکپارچه‌سازی داده، تغییر شکل داده، بارگذاری داده – Data Loading – و نوسازی دوره‌ای داده – Periodic Data Refreshing – هستند.

ديتا کيوب هایی که در انباره داده وجود دارد، با هدف تسهیل تصمیم سازی بر اساس موضوعات اصلی تقسیم‌بندی می‌شوند. (برای مثال، مشتری، موارد کالا، تامین‌کننده و فعالیت) گردآوری داده‌ها با هدف به دست‌آوردن اطلاعات از چشم اندازهای تاریخی (برای مثال موضوعات مربوط به 6 تا 12 ماه گذشته) انجام شده و این اطلاعات معمولا در ادامه خلاصه‌سازی می‌شوند.

درک مکعب داده

حتما با پایگاه‌داده‌های رابطه‌ای مانند SQL و نرم‌افزار Excel یا Access  آشنا هستید. در این حالت ذخیره داده‌ها که در SQL و یا Excel مورد استفاده قرار می‌گیرد، داده‌ها به صورت دو بُعدی (مستطیلی) ذخیره و نمایش داده می‌شوند. یه این حالت ذخیره سازی  داده‌های مستطیلی گفته می شود. در مبحث داده‌کاوی هر ستون نمایانگر یک بُعد از داده است. اما در مکعب‌داده موضوع فرق می‌کند. در مکعب‌داده، داده‌ها به صورت چند بُعدی نمایش داده می‌شوند و هر بُعد یک ویژگی از انبارداده ما را نمایش می‌دهد. توجه کنید که ما برای راحتی داده‌ها را ۳بُعد فرض کرده‌ایم در حالی که انبار داده می‌تواند بی‌نهایت بُعد (ویژگی) داشته باشد که با توجه به آن‌ها می‌توانید داده‌های خود را تحلیل کنید.

اعمال اصلی در مکعب داده

پنج عمل اصلی در یک مکعب داده وجود دارد که هر کدام کاربرد و هدف ویژه ای در تحلیل و پردازش داده ها را دنبال می کند.

  • Drill Down
  • Roll Up
  • Slice
  • Dice
  • Pivot

Drill Down و Roll Up

مفهوم Drill Down یا رفتن به عمق ساده است. فرض کنید می‌خواهیم Drill Down را بر روی بُعد زمان انجام دهیم. اگر در سطح فصل قرار داشته باشیم. حالا می‌خواهیم به یک سطح پایین‌تر برویم. سطح پایین‌تر فصل می‌تواند ماه باشد. یعنی ماه در بُعد زمان از سطح فصل به سطح ماه Drill Down می‌کنیم. عکس عمل Drill Down، عمل Roll Up است.

Slice و Dice

دو عمل دیگر Slice و Dice هستند. این دو عمل نیز بسیار ساده‌اند. در عملیات Slice ما می‌توانیم یک مقدار از یک بُعد را انتخاب کنیم و بقیه مقادیر آن را حذف کنیم. ( ابعاد دیگر باقی می‌مانند)

عملیات Dice هم به این صورت است که ابعاد حفظ می‌شوند ولی از هر بُعد می‌توان یک یا چند مقدار را حذف کرد.

Pivot

یک عملیات دیگر عملیات Pivot یا چرخش در Data Cube است. در این عملیات جای ابعاد عوض می‌شود.

مکعب داده

 

مدیریت سرور، پشتیبانی و کانفیگ سرور – آفاق هاستینگ

نوشته های مشابه